Safety Transformer Benchmark

Part | - Analytical Model & Continuous Variables

Table of content

IMIOTIVATIONS .ttt s b e e s s bbbt e e s b et e e s bbb e e e s bbb s e e s ab bt e e s b b e e e s b b e e e srae e e s
F AN QT VA ot 1V, o o = PPN
(@] oY ul o2 Y 4o g T 2 o] o] =] o o T3PPSR
IMIDF fOFMUIGTION ..ttt h e s ae e st st et e bt e bt e sbe e she e eat e et e enbeeebeesaeesaeesabeeabeebeenbeenneas

1Y/ Te gToRTe] o T<Tot t1VZN o o] o] [=T o SRS

2T Rro] o] =Tt 01 VZ N o ] o] [=T o o FO RSP

1] e (o T4 4o TV - | Ao T o TP S PP PROPPTP

1Y/ TeTgTeRTe] o T=Tot 41V o o] o] 1T o SRS

2T Ero] oJT=Tot V7= o o] o] 1= o o HO PP

(0] oY ul o a1 4[] g TN 2K U1 4 PSPPI
¥/ TeYaToRTo] o JT=Tot 1 1VZ=N oY o] o] {=T o s WSO URRPRPRN

2T R¥e] o] T=Tei V7 o o] o] [=T o o VO URRPRRRN

(600] o) =Tl SR




Motivations

Many analytical test functions are available in the literature to compare optimization algorithms. They exhibit some
interesting features such as:

- explicit equations

- fast to compute

- known minimum

- scaled design variables and objectives

- ho constraint

As algorithms’ performances are changing a lot depending on the optimization problem and the model, the
benchmark proposed here is intended to be representative of design (pre-sizing) problems in electrical engineering
and more precisely in electromagnetic devices.

This benchmark exhibits other interesting features such as:
- multi-physics
- implicit equations
- highly constrained
- badly scaled design variables, objectives, and constraints
- multimodal, i.e. multiple minima

Links to fully detailed materials for the understanding and use of this benchmark are provided.

Analytical Model

The physical phenomena within the transformer are thermal, electric and magnetic. They are expressed in equations
that are ranked using specific algorithms. The assumptions for the analytical models are uniform distribution of
induction in the iron core and no voltage drop due to the magnetizing current. The magnetic field in coils is vertical.

This model leads to an implicit system of 8 multi-physical equations and other equations solved sequentially. To
address the multi-physical coupling, two multidisciplinary formulations are used. The multidisciplinary feasible (MDF)
formulation ensures the consistency of the model and the non-linear implicit system is solved by using the fixed-
point loop. As a consequence, all physics are solved several times for each model evaluation. In the individual
feasible (IDF) formulation, the model is not consistent. To ensure the consistency, two additional equality constraints
are used with two additional variables that link the physics. The computing time of the model is reduced as all
physics are solved one time.

The model and optimization problem have been presented at the International Conference on the Computation of
Electromagnetic Fields (COMPUMAG) in June 2007 and are available in the proceedings with reference: TRAN Tuan-
Vu, BRISSET Stéphane, BROCHET Pascal, “A Benchmark for Multi-Objective, Multi-Level and Combinatorial
Optimizations of a Safety Isolating Transformer”, COMPUMAG 2007, Aachen, Germany, 06/2007.

The equations are detailed and explained here.
The equations are given here.
The equations can be computed using the Mathcad file or the Matlab function.

In order to compute objective functions and constraints for MDF formulation:
x = [ 13e-3 ; 50e-3 ; 17e-3 ; 43e-3 ; 640 ; 0.32e-6 ; 2.9e-6 ];

$ a(m ; b(m) ; c(m) ; d(m) ; nl ; SI(m*) ; S2(m?)
[f,9] = safety transformer function(x,false,false); % mono-objective
[f,g9] = safety transformer function(x,true,false); % bi-objective

where:

M
f= { “’t} (bi —objective) or f=M,, (mono-objective)
)


http://optimisation.l2ep.ec-lille.fr/benchmarks/safety_transformer/files/safety_transformer_paper.pdf
http://optimisation.l2ep.ec-lille.fr/benchmarks/safety_transformer/files/safety_transformer_equations.pdf
http://optimisation.l2ep.ec-lille.fr/benchmarks/safety_transformer/files/safety_transformer_equations.mcd
http://optimisation.l2ep.ec-lille.fr/benchmarks/safety_transformer/files/safety_transformer_function.zip
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In order to compute objective functions and constraints for IDF formulation:
x = [ 13e-3 ; 50e-3 ; 17e-3 ; 43e-3 ; 640 ; 0.32e-6 ; 2.9e-6 ; 100 ; 1 1;
% a(m) ; b(m) ; c(m) ; d(m) ; nl ; Sl(m?) ; S2(m?) ; TcondilDF(°C) ; DV2 _IDF (V)
[f,g,h] = safety transformer function(x,false,true); % mono-objective
[f,g9,h] = safety transformer function(x,true,true); % bi-objective
where:
f unchanged
_ i} [T._.,—120°C |
T4 —120°C cond
T.,,—100°C
T..,—100°C ,
1001
% -0.1 I,
g= L (bi —objective) or g-= AV, (mono —objective)
AV, -0.1
-0.1 V.0
V
20 f,—1
f,—1
¢ 1 f,—1
L 2 i
| 08-7
Tcond -1
h= Teona_or (bi —objective and mono — objective)
A ) )
AL@JDF

Optimization Problems

The optimization problem depends on the multidisciplinary formulation. Two additional design variables and two
additional equality constraints are introduced in the optimizations problems with IDF formulation.

Some stochastic algorithms may have difficulty to deal with equality constraints. If so, prefer MDF formulation.

MDF formulation

The aim is to have a motor with the best efficiency while respecting some technical constraints. The fixed-point loop
stops when the residue is small enough or the fixed-point loop diverges. Therefore, a constraint on the residue is
added. Only 7 continuous and bounded design variables are kept for MDF formulation:

3mm<a<30mm 14mm<b<95mm 6mm<c<40mm
200 <n, <1200 0.15mm? < S, <19mm? 0.15mm? < S, <19mm?2

10mm<d <80mm



Mono-objective problem

min - M,,

min f
that is Teong £120°C T, <100°C bo <01 AV, <01
st. g<0 s.t. I, 20

f <1 f,<1 7>0.8 residue<10°

Bi-objective problem

The second objective is to maximize the efficiency. The constraint on the efficiency is then removed to have a
widespread Pareto front.

min M, max 7z
min f thatic T,q <120°C T, <100°C % <0.1 residue<10°
st. g<0 s.t. L
f, <1 f, <1 AV2 <01

20

IDF formulation
Two additional continuous and bounded design variables are introduced with IDF formulation:

3mm<a<30mm 14mm<b<95mm e6mm<c<40mm
10mm<d <80mm 200<n, <1200 0.15mm2 < §, <19mm?
0.15mm2< S, <19mm?2 40°C < Teond_ioF < 400°C 01V < AV, e < 24V

Mono-objective problem

min - M.,

min f Tog <120°C T, ., <100°C f, <1

< .
s.t. g_g that s s.t. %30.1 A 01 f,<1

1
n>0.8 Tcond_IDF =T 4 V2_IDF =4V,
Bi-objective problem

The second objective is to maximize the efficiency. The constraint on the efficiency is then removed to have a
widespread Pareto front.

min M, max 7
min f T ,<120°C T, <100°C f <1
Py .
st 9=0 thatis st wcp AVaco1  f,<1
h=0 1, Vs

4 VZ_IDF = A4V, Tcond_IDF =T,

cond

Optimization Results

The results are the same whatever the multidisciplinary formulation is.



Mono-objective problem

The known global optimum is:

a 12.9172mm b 50.1221mm c 16.6106mm d 43.2578mm
n, 640.771 S, 0.324828mm? S, 2.91178mm?
AV, e | 1.65798V Toong ior | 108.818°C IDF formulation additional design variables
M., 2.31115kg | 77 0.895537 T, |108.818°C T,., | 100.000°C
f1 1.000000 f2 1.000000 |10 0.100000 AV2 0.0690825
Il V20
Toong 1.000000 AV, 1.000000

BT — IDF formulation additional equality constraints

Tcond_IDF A V2_IDF

All constraints are fulfilled within a tolerance of 1e-6. Four inequality constraints are active.

This solution is found by SQP in fmincon (Matlab Optimization Toolbox) modified with some techniques as multi-
start, and scaling of variables, objective and constraints. The results are given for 100 starting points with uniform
sampling over the design space. The convergence rate is 68% and the average number of evaluations is 187. All the
results of this algorithm are in the Matlab .mat file here. The inputs and outputs of the model are in the order given
in the text file.

A Matlab function to run fmincon with multi-start is given here. Its gives a solution very similar and the convergence
rate is less than 1%.

The command line is below and the input argument is the number of starting points (runs):
[xbest, fbest, convergence]=run_fmincon on safety transformer benchmark (1000)

Bi-objective problem

A reference Pareto front with 100 points is given:
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This solution is found by SQP in Matlab fmincon modified with some techniques as multi-start, scaling of variables,
objective and constraints, and epsilon-constraint transformation for multi-objective problem. The results are given


http://optimisation.l2ep.ec-lille.fr/benchmarks/safety_transformer/files/SQP_results_on_safety_transformer_benchmark.zip
http://optimisation.l2ep.ec-lille.fr/benchmarks/safety_transformer/files/run_fmincon_on_safety_transformer_benchmark.zip

for 10 starting points with uniform sampling over the design space for each of the 100 solutions of the Pareto-set,
leading to 1000 mono-objective optimizations. All the results of this algorithm are in the Matlab .mat file here.

In order to draw the Pareto front, the script is below (assuming the .mat file is in Matlab current folder):
load('bi objective results.mat')
plot (bi objective results.graph(l,:),bi objective results.graph(2,:))
xlabel (bi_objective results.axes (1))
ylabel (bi objective results.axes(2))

Contact
For any question or comment, please contact:

Dr. Stéphane BRISSET
stephane.brisset@ec-lille.fr

I would be glad to see the results of your algorithms on this benchmark!


http://optimisation.l2ep.ec-lille.fr/benchmarks/safety_transformer/files/SQP_results_on_safety_transformer_benchmark.zip
mailto:stephane.brisset@ec-lille.fr

